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Abstract— This paper describes an efficient method for both
time- and frequency-domain solutions of electromagnetic (EM)
field problems. In this method EM field problems are formulated
using Laplace-domain finite element approach and are solved
using complex frequency hopping (CFH) technique. CFH is a
moment-matching technique which has been used successfully in
the circuit simulation area for solution of large set of ordinary
differential equations. Problems consisting of Dirichlet, Neumann
and combined boundary conditions can be solved using the
proposed algorithm to obtain both time and frequency responses.
Several electromagnetic field problems have been studied using
the new technique and the speed-up advantage (one to three
orders of magnitude) compared to conventional finite element
technique is demonstrated. A good agreement between numerical
results obtained using the proposed method and the previously
published results has been found.

I. INTRODUCTION

M

ODELING and simulation based on electromagnetic
field formulations are important for accurate analysis

and design of high-speed circuits and systems [1], [2]. One of

the most common approaches used for the solution of electro-
magnetic field problems is the finite element method (FEM)
[3]-[7]. FEM formulations are either space/frequency-domain
or space/time-domain. Space/frequency formulation leads to a
set of algebraic equations which have to be solved repeatedly
at many frequency points, while space/time formulation leads

to a set of ordinary differential equations which have to be
solved in the time-domain. The size of the equations to be
solved is usually large and the conventional solution algo-
rithms are restricted by computing time and stability condition.
For example, frequently used time-stepping schemes [8]-[12]
require the satisfaction of the stability condition, that is, the
ratio of spatial to temporal subdivision is to be greater than
or equal to the speed of propagation [13]. This means the
finer the mesh, the smaller the time step that must be chosen
[14]. Implicit variable time step integration algorithms [15]
can be used. However, they require solution of large set of
algebraic equations at each time point. Frequently, both time-
domain and frequency-domain results are of interest [10]-[1 1].
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In this case, fast fourier transform (FFT) and its inverse

can be used to move from one solution space to the other.
This can increase the computational time since in order to
achieve satisfactory resolution, FFT has to span longer time
and frequency intervals with smaller increments [16]. In an
attempt to improve the efficiency of FEM solution techniques,

a Laplace domain FEM has been proposed in [17]. This
method is an extension of the technique used for solution

of heat transfer problems [18]–[1 9]. However, it is based

on congruence transformation which involves computationally
expensive process of determining all the eigenvalues and
eigenvectors of a large matrix.

From the conceptional point of view, the new technique pro-

posed in this paper falls in the category of [17]–[19]. However,
the main difference is that it requires the computation of the
dominant natural modes only and thus eliminating the major
computing cost.

The new solution technique is based on complex fre-

quency hopping (CFH) [20]–[23], an expansion of asymptotic
waveform evaluation (AWE) [24] recently developed in the
circuit simulation area, which yields a speed-up factor of
10–1000 over conventional circuit simulators. It has been

extended to solution of static fields in VLSI interconnects
[25], in ground/power planes [26] and thermal equations [27].

CFH uses the concept of moment matching to obtain both

frequency- and time-domain responses of large linear networks
through a lower order multipoint Pade approximation. It
extracts a relatively small set of dominant poles to represent
a large network that may contain hundreds to thousands of
actual poles. CFH is particularly suitable for solving large
set of ordinary differential equations which make it a logical
candidate for solving time-harmonic EM equations. The main
steps involved can be summarized as follows: first, the given
problem which is in the form of damped wave equation is
formulated using FEM and the resulting ordinary differential
equation is transformed to the Laplace domain; second, the
Laplace domain output is expanded using Pad6 approximation
at selected frequency points; third, information from each
expansion point is used to generate the output frequency
response or alternatively a unified set of dominant pole/residue
pairs; finally, the results are transformed to the time-domain
in either analytical or numerical form.

The main advantages of the proposed method can be sum-
marized as follows:
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1) 10–1000 times faster than the conventional FEM solu-

tion techniques;
2) solution algorithm does not suffer from instability prob-

lems associated with the time-stepping methods;

3) produces simultaneously both the time- and frequency-
domain results.

The remaining part of this paper is organized as follows:

in Section II, the damped wave equations are derived from
Maxwell’s equations and formulated using variational tech-
niques. Section III describes the AWE and CFH techniques
in the context of solving the FEM equations. To illustrate
the accuracy and efficiency of the proposed method, Section
IV presents numerical results for several electromagnetic field
problems. The efficiency of the proposed method is illustrated
and discussed in Section V. Finally a brief conclusion of the

paper is presented in Section VI.

II. FORMULATION

For a homogeneous, isotropic, and a linear medium, starting
from Maxwell’s equations the following scalar equation can
be derived as

where O(Z, y, z, t) represents either the electric or magnetic
field components, and E, W, o are the permittivity, permeabil-
ity, conductivity of the medium respectively. f(z, y, z, t) is
related to the external excitation which could be function of
time, space or both. This expression can be applied to either a
diffusion problem where the second term in the left-hand-side
of (1) is dropped or to a wave equation where the third term
is dropped. Applying the finite element method [13] to (1)
where the interpolating functions are selected in exactly the

same fashion as compared to the time independent problems

except now the nodal values are taken to be functions of time

rather than constants. Expanding the unknown function @ in

the triangular finite element domain !2, as

N ‘P

q$, y,z, t) = ~ @t(t)a*(z, y,z) (2)
n=]

where iV,P is the total number of nodes in element 0.,, 0,(t)
denotes the local set of unknown time dependent expansion
coefficients and a., ($, y, z) are nodally based interpolation
functions such as those regularly used in FEM triangular
formulations [7]. It is of interest to note that in (2), the spatial

variables z, y and .z are discretized whereas the temporal
variable t is not. An appropriate functional to be minimized
for (1) is

where f] represents the finite element region. By minimizing
the functional of the problem and applying associated Dirichlet
and Neumann boundary conditions, a system of ordinary
differential equations is obtained as

where W, A, B, C, and q are defined as follows

Q={@i}; i=l,..., iV (5)

A = ~ [S],, (6)
ep=l

B= C= f’[T],p (7)
ep=l

q = ~ [G]ep (8)
eP=l

where fv. denotes the total number of elements. A, B, and
C are iV x iV symmetric, positive definite matrices assembled
from [S]ep and [T]ep and N is the total number of nodes. q is

a vector of dimension N, assembled from [G]ep, containing

the forced terms attributed to the time or space excitation.

[S].p and [T].p are real symmetric square element matrices
and [G]., is a column vector given by

[W., = ~ 4’.f(~)dfL,
ep

(9)

(lo)

(11)

subject to the initial conditions

v(o) = v~ (12)

w’(o) = q (13)

where fl., denotes the domain of the finite elements. In (9) to
(11) p refers to either 1, 2, or 3 corresponding to one, two, or

three-dimensional (3-D) finite element solution scheme while

@ is the corresponding shape function and ep represents the
finite elements. Taking the Laplace transform of (4) results in

(CS2 + Bs + A)x(s) = R(s) (14)

or

Y(s)X(S) = R(s)

where B = poB, C = ~MC, X(s) =
is given by

(15)

L[V(t)], and R(s)

R(s) = SC(VO + Vi) + BVO + Q(s) (16)

where Q(s) = ,C[q(t)],

III. MOMENT MATCHING TECHNIQUES

Moment matching techniques such as asymptotic waveform
evaluation (AWE) [24] and complex frequency hopping (CFH)
[21 ] have been topics of intense research in the circuit sim-
ulation area in the recent years. They have been successfully
and efficiently applied for obtaining the solution of large set
of ordinary differential equations.
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In general, moment matching technique approximates the

frequency response of a Taylor series expansion in the com-
plex s-plane. The cost of an expansion is approximately one
frequency point analysis. The moments (coefficients of the
expansion) are matched to a lower order transfer function
using a rational Pad6 approximation. This transfer function
can be used to obtain the output response. The moments are
generally taken from an s = O expansion (Maclaurin series).
Single Pad6 approximations are accurate near the point of
expansion in the complex s-plane and decrease in accuracy

with increased distance from the point of expansion. Complex
frequency hopping overcomes this problem and is summarized

in the following section.

A. Complex Frequency Hopping

Complex frequency hopping is a method by which the
frequency response of a system is expanded in multiple Taylor
series expansions in the Laplace s-domain. The expansion
points are chosen on or near the imaginary axis because
poles that dominate the transient and frequency response of
a system are found there. The moments of the expansion are
then matched to a rational Pad6 approximation. These Pad6
approximations have several useful properties, one of which is
the convergence of the poles of the approximation to the actual
poles of a system. There are two approaches for generating
the response of a system.

In the first approach [20], [21], several expansion points are

generated and the converged poles from each expansion are
compared. If two expansions have the same poles, then they

are considered accurate within the radius of accuracy defined

by those poles. If no poles are found in common, then an
intermediate hop (expansion) is chosen. All poles within the
radius of accuracy of each hop are then collected giving the
actual system poles near the imaginary axis. The frequency and
transient responses are then a closed-form function of these
poles and their residues.

In the second approach [22], in order to obtain the frequency
response, a set of rational transfer functions are generated at
a minimized set of expansion points. It is the vallue of these
transfer functions that is compared at points intermediate to
the expansion points rather than a search for same poles. If
two transfer functions are found to give the same frequency
response at an intermediate frequency point between the two
generating hops then these transfer functions are considered
accurate. If this is not the case, then another hop is cho-
sen between the two expansion points and an expansion is
performed there. It was found empirically that this approach
generally requires lesser number of hops compared to the first
approach. This means that the CPU time can be reduced.
Further reduction was also noted due to the fact that no pole
convergence was required at each expansion point.

Summarizing, CFH ensures accuracy of an approximation
for a complete frequency range, using multiple expansion
points and corresponding Pad6 approximations at the fre-
quencies of interest. Additional hops are generated at an
incremental CPU cost above the cost of the first. However,
the number of hops typically needed ranges from 2–15, far

less than full FFT analysis requiring hundreds or thousands of

frequency point analyzes.

B. Pad& Approximation

Consider the response vector X(s) represented in (15).
Taylor’s series expansion of the output X(s) about a complex
frequency point s = SO, is given by

co

x(s) = ~ Mn(s – S.)” (17)
n=i)

where Mn is the nth moment vector of the Taylor’s expansion

about SO and is given by

M = iYIY-l(s)R(s)]l~ =~o ~1
n

i3s” I
(18)

A recursive equation for the evaluation of the moments can

be obtained in the form

[Y(so)]Mn = - ~[Y]”Mn-r/r! (19)
T=l

where

[Y]” = gYl .
$7=.5’,

For each expansion point, the moments mn = [W](.);
n=o, 1,2, . . . (2q – 1) of an output i are matched to a lower

order frequency-domain function in the form

P~(s)
H(s) = X[i](s) = —

QM(s)

_ ~~=o ajs’
— for O < s ~ -jwn.

1 + ~~=1 bjs~
(20)

For given L and M, the coefficients of the numerator and
denominator of the transfer function are related to the moments
by

[

m&M+l mL– M+2 . . . mL

‘mL-&f+.2 mL–&f+3 . . . mL+l
1

PmL mL+l . . . mL+M–1‘1

7’

(21)

(22)

where r= O, l,..., LandmJ=Oifj <O.

C. Binary Search Algorithm

Pad6 approximation is very accurate near the point of

expansion i.e., s = so. However, the accuracy of Pad6
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complex ‘s’ plane

Fig. 1. Generation of transfer function by CFH.

approximation decreases as we move further away from the
point of expansion similar to the case of a Taylor’s series
expansion.

In order to check the accuracy of an approximation, two
expansion points are necessary. The accuracies of these two
expansion points can be verified by matching the poles gen-
erated at these two expansion points [20], [21]. Alternatively,

the two expansion points can be verified for their accuracy by
finding the value of the transfer function at a point intermediate

to these two expansion points [22]. Number of expansions
required to obtain a fairly accurate set of transfer functions

over a specified frequency range is controlled by a binary
search algorithm.

The steps involved in the binary search algorithm for the
second approach is summarized below.

Step 1)

Step 2)

Step 3)

Step 4)

Step 5)

Set ~L = O and ~H = ~~.. (Fig. 1)

Expand the system’s response at frequency f = .f~.
Determine the coefficients of the corresponding

transfer function IIL (s) using (21) and (22).
Expand the system’s response at frequency .f =
j~. Determine the coefficients of the corresponding

transfer function HH (s).

Set ~ = ~ (.f~ + .fH). Calculate HL(j2n~) and
HH(j2m~). If, lllIH(j2m~) – lYL(j2m~) I < c,
where e represents pre-specified threshold for rel-
ative error, GO TO Step 5. Otherwise expand at

~mid = ~ (~L + ~H) and determine Hmid(S)
If no middle frequency ,f~id is generated between

any two other frequency expansions, STOP, ELSE,

repeat Steps 24 between every two consecutive
frequency points (e.g., between f~ A ~~id and

~mid & ~H).

A similar search algorithm can be used for the first approach
[21].

At the completion of the binary search algorithm, a set
of transfer functions are generated. The frequency response
at a particular frequency point is computed by choosing a
transfer function valid for that region. This is repeated for all
other frequency points and the system’s frequency response
is computed. The time-domain response is obtained as a

closed form function of the generated poles and residues or
alternatively by using inverse fast fourier transform (IFFT).

D. Moments Generation

To derive an expression for moments Mm, we can rewrite
(14) using (16) and (17) at any arbitrary complex frequency

point s = SO, and expanding the right hand side of (14) using
Taylor’s series, we get

[(s - SO)2C + (s - s.)B + A + (S - sO)2SOC
cc

+ Bs. + Cs~] ~ M.(s – S.)”

n=o

[

= R(so) + ‘s ;,’”) R’(SO) + ‘s ;:”)’R’’(so)

(s- ‘dnR~(so)
+“””+ ~,

1
(23)

where R(sO) = BUO + Q(so), R’(so) = C(QO + VI) +
Q’(so), R“(so) = Q“(so) . . . and Rn(so) = Qn(so).

Equating the coefficients of the powers of (s – SO) on both
sides, we get

[Cs: + Bso + A]Mo = R(so) (24)

[Cs: + Bso + A]M1 = -[B + 2SOC]M0 + R’(so). (25)

Generalizing we have

[Cs: + Bso + A]Mn

Rn(so)
= –BMn-l – C[2soMn.1 + Mn_2] + — (26)~!

for n ~ 2.

IV, NUMERICAL RESULTS

Example 1: For purposes of comparison the first problem

chosen is an example reported in [17]. Consider a one-
dimensional (l-D) diffusion problem shown in Fig. 2. The
problem consists of a magnetic slot with bottom and side
walls made of magnetic material with infinite permeability.
The time dependent magnetic field is illuminated on the top
surface of the magnetic slot producing a time dependent
current flowing through a metal-filled slot of infinite length.

The excitation of the magnetic field ~(t) in (1) on the top
surface of the magnetic slot is f(t) = H(t) = eat -- e@,

which is an EMP type excitation with a = –4.0 x 106 and

~ = –4.76 x 108. The other parameters are d = :1.0 x

10-4 (m), p = 47rx 10-7 (H/m) and m = 5.76 x 105 (S/m).
The boundary condition of the problem is H(t) = O at
% = O. Fig. 3 shows the normalized time-domain magnetic
field obtained by the proposed method at three different points

– ~). The results are compared(~=~,s=~,and$––
with the response obtained by solving the ordinary differential
equation (4) using conventional implicit numerical integration
method [28]. A good agreement is observed between these
two methods. These results are also in agreement with the
analytical solution reported in [17].
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Fig. 2. The magnetic slot.
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Fig. 3. Time-domain magnetic field distribution for the magnetic slot.

b

a

Fig. 4. The metallic rectangular waveguide.

Example 2: The second problem is a two-dimensional (2-

D) metallic rectangular waveguide shown in Fig. 4. It is
assumed that the waveguide is filled with a lossless dielectric
materiall o = O and its walls are perfectly conducting UC-= co.
For this problem it is also assumed that TM plane wave is
propagated resulting in an electric field in the z-direction
which can be determined from scalar wave equations. The
other components of the field can be obtained from the

0.02
●* AnalyticalSolution
-- CFH Method

Fig. 5. Time-domain electric field distribution for the rectangular waveguide,

TABLE I
COMPARISON OF TRANSVERSE RESONAPTI

FREQUENCIES OF THE RECTANGULAR WAVEGUIDE

Mode FEM & CFH Analytical Solution

GHz f= ~fi~+$) GHz

TMII .18102 .180152
TM21 .25158 .249827

TM3~ .33749 .335178
TM13 .46328 .460658
TM23 .49702 .492102
TM51 .52770 .521654
TM33 .54890 .540458
TM61 .62588 .618038
TMSs .68161 .672215
Tl& .73713 .749481

z-components of the electric field. The application of the
proposed method is demonstrated for a rectangular waveguide

with dimensions (a = 1.5 m and b = 1.0 m) subject to the
boundary conditions

O(Z> l,t) = o, @(z, o,t) = o, (27a)

@(o, y,t) = o, Q(l.5, y,t) = o (27b)

and the initial conditions are given by

(28)

where the right-hand side of the wave equation (1) is a function
of space only given by

()2TX
.f($, y) = sin ~ sin(7ry) (29)

on the domain of solution.
The problem reduces to that of a wave equation given by

~2@ _ ~~2@.2 ~ = f(z, y) (30)
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Matrix Size

25 X 25

255 X 255
289 X 289

357x357
925 X 925

1431 x 1431

t

Y

TABLE II
CPU TIME COMPARISON

FEM & CFH
(seconds)

.3

11.75
18.66
32.6

212.8

500.33

(8.3 minutes)

h

cl----–---–-–––-l-
1

I

I

Y“ ‘
Ez(t)

I

d h
Ie

f

1

output I
● l

--—— ———- -—— —— la — x
o g

Fig.6. Electromagnetic shield.

TABLE III
COMPARISONOF TRANSVERSERESONANTFREQUENCIES

(MHZ) FOR AN ELECTROMAGNECTICSHIELD

LDFEM FEMFD FEM& CFH
I

531.90 530.16 529.98
894.50 814.57 879.78
1132.00 1131.30 1131.15

The analytical solution of (30) can be obtained

method of separation of variables given by

@($, Y,~) = ~;m2—(coswt - l) f(x, y)

using the

(31)

where w = *. Fig. 5 shows both the time-domain re-

sponse of the electric field at (z = ~ and y = ~) and the

analytical solution (31 ). It is observed that the two responses
are indistinguishable.

Example 3: Transverse resonance frequencies of the rect-

angular waveguide shown in Fig. 4 with the same dimensions
are calculated by the proposed method where the excitation
is at (z = 5 and y = ~) and output at (z = ~ and
y = ~). To verify the proposed method the transverse resonant
frequencies of the rectangular waveguide are also calculated by
the analytical solution and the results are compared in Table I.
A good agreement between the results is observed. To illustrate
the efficiency of the CFH technique, the transverse resonance
frequencies were also calculated using the FEMFD approach
where the frequency-domain response was obtained directly
solving (14). CPU time comparison is shown in Table II.

7
FEMFD Speed-up

(seconds) Ratio

5.8 19

532.35 45

753.26 41
921.39 29

9364.68 45

36538.36 72
(10.1 hours)

Number
of hops

2
15

19
21

23
14

TABLE IV
CPU TIME COMPARISON FORTHE ELECTROMAGNETICSHIELD

FEMFD FEM & CFH Speed-up
(see) (see) Ratio

17228.53 118.92 145

Fig. 7, Cylindrical waveguide.

Example 4: The example chosen here is an application to

a 2-D shielding problem reported in [17]. The third term
in (1) is dropped due to the omission of the conduction

current and this corresponds to wave equations. The problem
consists of two TM plane waves, independent of z-coordinate,

oppositely impinge on a rectangular metallic cylinder serving
as an electromagnetic shield, in which four slots or apertures
are symmetrically located as shown in Fig. 6. The boundary

aE. (t) _
conditions are as follows: ~ = O on cb and oa, ~ —

O on ba.
A pulse is used as an excitation on the boundary co. The

physical structure and the dimensions of the problem are as
follows: the 2-D shield with slots is made of perfect conductor;
the excitation source has no spatial variation in the z direction;

oa = 1.0 m,ga = 0.2 m, ha = 0.2 m, ba = 1.0 m, de =: 0.05
m and the slot width ef = 0.05 m. The location of the output
is at z = 0.9571 m and y = 0.05 m. In [17], LDFEM is
used to find the frequency response of the problem. Here, 841
nodes and 1568 elements were used in the FEM formulation.
Transverse resonant frequencies are compared in Table HI and
CPU time comparison is shown in Table IV.

Example 5:

The problem chosen here is a cylindrical structure, problem

5.25 in [29]. The problem consists of a circular cavity with a
conducting wedge as shown in Fig. 7. For a structure where
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TABLE V
COMPARISONOF TRANSVERSERESONANTFREQUENCIES

(MHz) FOR A CYLINDRICAL WEDGE WAVEGUIDE

Analytical FEMFD FEM & CFH

Met hod

TMol = 154.50 156.85 4
I TMII = 245.65 I 229.34 I 229.49

T’M21 = 329.08 312.94 313.48 I
TM., = 353.80 351.68 351.56

TABLE VI
CPU TIME COMPARISONFORA CYLINDRICALWEDGEWAVEGUIDE

FEMFD FEM & CFH Speed-up

(see) (see) Ratio

3326.82 11.38 292

‘t g —~—

b

A

I output
●

h

,1

● B

sourc

a
0

Fig. 8. Triple TEM cell.

the thickness is relatively much smaller than the radius of

the waveguide a, the transverse resonant frequency of the
dominant mode is given by

f7-= w27ra@
(32)

where w is the first root of Bessel’s function Jv (w) = O and
v = -. For a specific case, w and f,are calculated
to be 3.28 and 154.5 MHz (32) where C?. = 45°, v =
0.5714, a = 1.0 m. For several modes the resonant frequency,
f, is calculated and is given in column one of Table V.

In this example, 396 nodes and 700 elements were used
in the FEM formulation. The analytical results are compared
with the results from FEMFD and FEM & CFH in Table V
and CPU time comparison is shown in Table VI.

Example 6: The Triple-TEM or TTEM considered is an
example reported in [30]. The TTEM cell has a tapered
structure and has an additional electric field polarization in the
transverse plane compared to conventional TEM cells. It also
has two separately perpendicular inner conductors (septums)
distinguishing it from GTEM cell. In [30], LDFEM is used to
find the frequency response of TTEM cell. The cross sectional
area of the TTEM cell is shown in Fig. 8. The problem domain

TABLE VII
COMPARISONOF TRANSVERSERESONANT
FREQUENCIES(MHz) FOR A TTEM CELL

LDFEM

242.52
381.21
388.89
484.72

545.28

555.00
606.04

640.66

FEMFD

241.61
382.40
383.35
481.61

535.84

547.65
609.39
615.83

TABLE VIII

FEM & CFH

241.82
382.47
383.15
481.59

535.94

547.39
609.59
615.75

CPU TIME COMPARISONFORA TTEM CELL

FEMFD FEM & CFH Speed-up
(see) (see) Ratio

18393.43 25.92 710

is bounded by the following Dirichlet boundary conditions:

septum A is set to 1 V while septum B is set to O V. The
outer conductor is set to O V. The assumed excitation is a
line source of E= field for the TM modes. It is also assumed
that the fields have no variations along the z-coordinate. The
physical dimensions of the cell are: a = 1.0 m, b = 1.0 m,
w = ().5 m, h = ().875 m and g = ().187’5m. The number

of degrees of freedom chosen in the finite element calculation
was 676. The transverse resonant frequencies using the three
different approaches are shown in Table VII. Table VIII shows

a very good speed-up ratio for this problem.

V. DISCUSSION AND CPU ANALYSIS

The main reason behind the efficiency of the proposed ap-
proach is that it requires one LU decomposition per frequency
hop, whereas FDFEM requires one LU decomposition at each
frequency point. Generally, the number of frequency hops
required is far less than the number
get an accurate solution. To illustrate
cost for the two approaches

(CPU) FDFEM

of frequency points to
this, consider the CPU

= (CPU). + N, x [(CPU).U + (cPu).~] (33)

(cpu)~F~

= (CPU). + N, x [(CPU).U + Ivm x (CPU) .,] (34)

where (CPU) FDFEM is the total cost for the FDFEM ap-

proach, (CPU)CFH is the total cost for the FEM & CFH

approach, (CPU) ~ is the time for reordering the sparse matrix,

NP is the number of frequency points considered, Nh is the

total number of hops and Nm is tie total number of moments.

Table IX indicates the actual and expected speed-up ratio

obtained for different examples included in this paper. The

deviation from the expected value is due to the other factors

being neglected in (33) and (34).

For sparse matrices, (CPU)LU is proportional to Na where

N is the size of the matrix resulting from FEM formulation and

a is problem dependent and ranges between 1.1 to 1.7 [15].

Assuming (CPU)LU is the most dominant factor compared to
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TABLE IX
COMPARISONOF SPEED-• RATIO FOR DIF’RWENTEXAMPLES

Experiments Expected Speed-up Actual Speed-up

N,/Nh (C~u)FDFEM/(CpU)CFH

Eg. 3, matrix size = 925 45 45
Eg. 3, matrix size = 1431 74 72
Eg. 4, matrix size = 841 164 145
Eg. 5, matrix size = 396 456 292
Eg. 6, matrix size = 676 820 710

the other CPU costs, we get speed-up ratio x ~ and the CPU
cost for the proposed FEM and CFH approach is ,

(CPU)CF~ & KNhN” (35)

where K is a constant.

VI. CONCLUSION

A new and efficient technique for simultaneously obtaining

frequency- and time-domain response for electromagnetic field

problems has been presented in this paper. The method is based
on the Laplace domain finite element formulation and com-
plex frequency hopping techniques. Several electromagnetic
problems have been studied using the new method and an
accurate match with the analytical solution has been found. A

speed-up of one to three orders of magnitude compared to the
conventional FEM technique has been obtained.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

RE~RENcES

M. Nakhla and Q. J. Zhang, Eds., Modeling and Simulation of High
Speed VLSI Interconnects. Boston, MA: Khrwer, 1995.
Y. S. Tsuei, A. C. Cangellaris, and J. P. Prince, “Rigorous electromag-
netic modeling of chip-to-package (first-level) interconnections,” IEEE
Trans. Comp., Hybrids, Manufact. Tech., vol. 36, pp. 1775–1787, Dec.
1988.
U. Ghoshai and L. N. Smith, “Finite element analysis of skin effect in
copper interconnects at 77 K and 300 K,” in IEEE MZTS Int. Symp.
Dig., 1988, pp. 773-776.
C. K. Tzuang and T. Itoh, “Fhrite element analysis of slow wave
Schottky contact printed lines,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-34,no. 2, pp. 1483–1489,1986.
M. A. Kolbehdari,“Analysisof quasistaticcharacteristicof cylintilcal
coupledmicro-striptransmissionlineby finiteelementmethod;’in IEEE
AP-MTT Benjamin Franklin Symp. Dig., May 1994, pp. 69-73.
M. A. Kolbehdtn-i and M. Sadlku, “Finite and infinite analysis of coupled
cylindrical microstip line in a nonhomogeneous dielectric media,” in
Proc. IEEE Southeast Con$, Mar. 1995, pp. 269-273.
P. P. Silvester and R. L. Ferraxi, Finite Elements for Electrical Engineers.
New York Cambridge Univ. Press, 1990.
J. Joseph, T. J. Sober, and K. J. Gohn, “Time domain anatysis by the
point-matched finite element method;’ IEEE Trans. Magn., vol. 27, pp.
3852-3855, 1991.
N. K. Madsen and R. W. Zlokowski, “Numerical solution of Maxwell’s
equations in the time domain using irregular nonortbogonal grids,” Wave
Motion, vol. 10, pp. 583-596, 1988.
G. Mur, “The finite element modeling of tbreedimensional electro-
magnetic fields using edge and nodal elements,” IEEE Trans. Antennas
Propagat., vol. 41, no. 7, pp. 948–953, July 1993.
S. Celozzi and M. Feliziarri, “Time domain finite element simulation of
conductive regions,” IEEE Trans. Magn., vol. MAG-29, pp. 1705–1710,
1993.
P. J. Leonard and D. Rodger, “Some aspects of two and three dimen-
sional transient eddy current modeling using finite element and single
step time matching algorithms,” IEE Proc. Part-H, 1988, vol. 135, pp.
159–166.
D. S. Burnett, Finite Element Analysis. Reading MA: Addkon-Wesley,
1988.
I. A. Tsukerrnan, A. Konrad, G. Bedrosian, and M. V. K. Chari, “A
survey of numerical methods for transient eddy current problems,” IEEE
Trans. Magn., vol. 29, pp. 1711–1716, 1993.

[15]

[16]

[.17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and
Design. New York: Van Nostrand, 1983.
H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms.
New York Springer-Verlag, 1982.
X. D. Cai and G. I. Costache, “A Laplace domain finite element method
(LDFEM) applied to diffusion and propagation problems in electrical
engineering,” Int. J. Numerical Modeling, Electronic Networks, Devices
and Fields, vol. 7, pp. 419-432, 1994.
H. T. Chen and C. K. Chen, “Hybrid Laplace transforrn/finite element
method for two dimensional transient heat conduction,” J. Therrno-
physics, vol. 2, pp. 31-36, 1988.
C. K. Chen and T. M. Chen, “New hybrid Laplace trausfonn/tinite ele-
ment method for three dimensional transient heat conduction problem,”
Int. J. Num. A4eth. Eng., vol. 32, pp. 45–61, 1991.
E. Chiprout and M. Nakhla, Asymptotic Waveform Evaluation and
Moment Matching for Interconnect Analysis. Boston: Khrwer, 1994.
E. Chiprout and M. Nakhla, “Analysis of interconnect networks using
complex frequency hopping,” IEEE Trans. Computer-Aided Design, vol.
14, pp. 186-200, Jan. 1995.
R. Sanaie, E. Chlprout, M. Nskbla, and Q. J. Zhang, “A fast method
for frequency and time domain simulation of high speed VLSI intercon-
nects; IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2562–257 1,
1994.
M. A. Kolbehdari, M. S. Nakbla, and Q. J. Zhang, “Solution of EM
problems using finite element method and complex frequency hopping
techniques:’ in 25th European Microwave Con$, Sept. 1995, vol. 2, pp.
1079-1081.
L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation
for timing analysis:’ IEEE Trans. Computer-Aided Design, vol. 9, pp.
352-366, 1990.
S. Kumashiro, R. Robrer, and A. Strojwas, “Asymptotic waveform
evshration for transient analysis of 3-D interconnect strictures,” IEEE
Trans. Computer-Aided Design, vol. 12, pp. 988-996, 1993.
E. Chlprout, M. Heeb, M. Nakhla, and A. E. Ruehli, “Simulating 3-
D retarded interconnect models using complex frequency hopping,” in ‘
Proc. IEEE-ACM Int. Corf Computer-Aided Design, 1993, pp. 66-72.
D. G. Lhr, V. Phanilatha, Q. J. Zhang, and M. Nakhla, “Asymptotic
thermal analysis of electronic packages and printed circuit boards;’ IEEE
Trans. Comp., Packag. Manu$ Technol., Part A, vol. 18, pp. 781–787,
1995.
MATLAB User’s Guide. Natick, MA The Math Works, Inc., 1992.
R. Barrington, Time-Harmonic Electromagnetic Fields. New York
McGraw-Hill, 1961.
X. D. Cai and G. I. Costache, “Finite element analysis of a triple.TEM
cell,” IEEE Trans. Electromagn. Compat., vol. 36, no. 4, pp. 398-404,
Nov. 1994.

M. A. Kolbehdari received the B. S,, M. S., and
Ph.D. degrees in electrical engineering from the
University of Communication, T@rsn, Irsn, the
University of Mississippi, and Temple Univ&sity,
Philadelphia, PA, in 1984, 1989, and 1993, respec-
tively.

He joined the Department of Electrical Engineer-
ing at Temple University as a Research Fellow in
August 1993. Since October 1994, he has been
with the Department of Electronics at Carleton
University as a Resemch Associate Engineer. His

research interests include applied electromagnetic, modeling and simulation of
high frequency circuits, packaging, multichip modules, and high-speed VLSI
interconnects, scattering and antennas.



1534 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 9, SEPTEMBER 1996

Meera Srinivasan (S ’96) received the B.Eng. de-
gree in electrical engineering from Bangalore Uni-
versity, Brmgrdore, India in 1992.

Her professional experience in the field of power
electronics in 1993 and 1994 mainly involved design
and development of de-de converters and switch
mode power supplies. She handled several indepen-
dent projects at Electrohms Private Ltd., Bangalore,
India. Presently she is pursuing the M.Eng. degree
in the Department of Electronics at Carleton Univer-
sity, Ottawa, Canada. Her current research involves

development of computer-ai~ed design tools for design of high speed circuits
and interconnects.

Michel S. Nakhla (S’73–M’76–SM’88) received
the B. SC. degree in electronics and communica-
tions from Cairo University, Egypt in 1967 and the
M.A.SC. and Ph.D. degrees in electricrd engineering
from Waterloo University, Ontario, Canada in 1973
and 1975, respectively.

In 1975, he was a Postdoctoral Fellow at Uni-
versity of Toronto, Ontario, Canada. In 1976 he
joined Bell-Northern Research, Ottawa, Canada, as
a Member of the Scientific Staff where he became
Manager of the simulation group in 1980 and Senior

Manager of the computer-aided engineering group in 1983. In 1988, he joined
Carleton University, Ottawa, Canada, where he is currently a Professor in
the Department of Electronics. His research interests include computer-aided
design of VLSI and communication systems, high-frequency interconnects
and synthesis of analog circuits. He is coauthor of Asymptotic Waveform
Evaluation (Kluwer, 1994) and coeditor of Modeling and Simulation of High-
Speed VLSI Interconnects (Khrwer, 1994).

Dr. Nakhla is the holder of the Computer-Aided Engineering Senior
Industrial Chair established at Carleton University by Bell Northern Research
and the Natural Sciences and Engineering Research Council of Canada.

QLJun Zhang (S’8z&M’87-SM’95) received the
B .Eng. degree from the East China Engineering In-
stitute, Nanjing, China in 1982, and the Ph.D. degree
from McMaster University, Hamilton, Canada, in
1987, both in electrical engineering.

He was with the Institute of Systems Engineering,
Tlanjin University, Tianjin, China, from 1982 to
1983. He was a Research Engineer with Opti-
mization Systems Associates Inc., Dundas, Ontario,
Canada from 1988 to 1990. During 1989 and 1990
he was also an Assistant Professor of Electrical and

Computer Engineering in McMaster University, He joined the Department
of Electronics, Carleton University, Ottawa, Canada in 1990 where he is
presently an Associate Professor. His professional interests include all aspects
of circuit CAD with emphasis on large scale simulation and optimization,
statistical design and modeling, neural networks, sensitivity analysis, and
optimization of microwave circuits and high-speed VLSI interconnections. He
is a coeditor of Modeling and Simulation of High-Speed VLSI-Interconnects
(Kluwer, 1994) and a contributor to Analog Methods for Computer-Aided
Analysis and Diagnosis (Marcel Dekker, 1988).

Dr. Zhang is the holder of the Junior Industrial Chair in CAE established
at Carleton University by Bell-Northern Research and the Natural Sciences
and Engineering Research Council of Canada.

Ramachandra Achar (S’95) received the B.Eng.
degree in electronics engineering from Bangalore
University, India, in 1990, and the M.Eng. degree in
micro-electronics from Birla Institute of Technology
and Science, India, in 1992. Currently he is working
toward the Ph.D. degree at Carleton University.

He spent the summer of 1995 working with
the electrical modeling and simulation group at T.
J. Watson Research Center, IBM, NY. He was a
Graduate Trainee at Central Electronics Engineering
Research Institute, Pilani, India in 1992. He was also

previously employed at Larsen and Toubro Engineers Ltd., Mysore, India
as a R&D Engineer at their ASIC design center and at Indian Institute of
Science, Bangalore, India as a research assistant. Hk research interests include
computer-aided design of high-speed systems and numerical algorithms.


