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Abstract— This paper describes an efficient method for both
time- and frequency-domain solutions of electromagnetic (EM)
field problems. In this method EM field problems are formulated
using Laplace-domain finite element approach and are solved
using complex frequency hopping (CFH) technique. CFH is a
moment-matching technique which has been used successfully in
the circuit simulation area for solution of large set of ordinary
differential equations. Problems consisting of Dirichlet, Neumann
and combined boundary conditions can be solved using the
proposed algorithm to obtain both time and frequency responses.
Several electromagnetic field problems have been studied using
the new technique and the speed-up advantage (one to three
orders of magnitude) compared to conventional finite element
technique is demonstrated. A good agreement between numerical
results obtained using the proposed method and the previously
published results has been found.

1. INTRODUCTION

ODELING and simulation based on electromagnetic

field formulations are important for accurate analysis
and design of high-speed circuits and systems [1], [2]. One of
the most common approaches used for the solution of electro-
magnetic ficld problems is the finite element method (FEM)
[3]1-[7]. FEM formulations are either space/frequency-domain
or space/time-domain. Space/frequency formulation leads to a
set of algebraic equations which have to be solved repeatedly
at many frequency points, while space/time formulation leads
to a set of ordinary differential equations which have to be
solved in the time-domain. The size of the equations to be
solved is usually large and the conventional solution algo-
rithms are restricted by computing time and stability condition.
For example, frequently used time-stepping schemes [8]-[12]
require the satisfaction of the stability condition, that is, the
ratio of spatial to temporal subdivision is to be greater than
or equal to the speed of propagation [13]. This means the
finer the mesh, the smaller the time step that must be chosen
[14]. Implicit variable time step integration algorithms [15]
can be used. However, they require solution of large set of
algebraic equations at each time point. Frequently, both time-
domain and frequency-domain results are of interest [10]-[11].
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In this case, fast fourier transform (FFT) and its inverse
can be used to move from one solution space to the other.
This can increase the computational time since in order to
achieve satisfactory resolution, FFT has to span longer time
and frequency intervals with smaller increments [16]. In an
attempt to improve the efficiency of FEM solution techniques,
a Laplace domain FEM has been proposed in [17]. This
method is an extension of the technique used for solution
of heat transfer problems [18]-[19]. However, it is based
on congruence transformation which involves computationally
expensive process of determining all the eigenvalues and
eigenvectors of a large matrix.

From the conceptional point of view, the new technique pro-
posed in this paper falls in the category of [17]-[19]. However,
the main difference is that it requires the computation of the
dominant natural modes only and thus eliminating the major
computing cost.

The new solution technique is based on complex fre-
quency hopping (CFH) [20]-[23], an expansion of asymptotic
waveform evaluation (AWE) [24] recently developed in the
circuit simulation area, which yields a speed-up factor of
10-1000 over conventional circuit simulators. It has been
extended to solution of static fields in VLSI interconnects
[25], in ground/power planes {26] and thermal equations [27].
CFH uses the concept of moment matching to obtain both
frequency- and time-domain responses of large linear networks
through a lower order multipoint Padé approximation. It
extracts a relatively small set of dominant poles to represent
a large network that may contain hundreds to thousands of
actual poles. CFH is particularly suitable for solving large
set of ordinary differential equations which make it a logical
candidate for solving time-harmonic EM equations. The main
steps involved can be summarized as follows: first, the given
problem which is in the form of damped wave equation is
formulated using FEM and the resulting ordinary differential
equation is transformed to the Laplace domain; second, the
Laplace domain output is expanded using Padé approximation
at selected frequency points; third, information from each
expansion point is used to generate the output frequency
response or alternatively a unified set of dominant pole/residue
pairs; finally, the results are transformed to the time-domain
in either analytical or numerical form.

The main advantages of the proposed method can be sum-
marized as follows:

0018--9480/96$05.00 © 1996 IEEE



KOLBEHDARI et al.- SIMULTANEOUS TIME AND FREQUENCY DOMAIN SOLUTIONS

1) 10-1000 times faster than the conventional FEM solu-
tion techniques;

2) solution algorithm does not suffer from instability prob-
lems associated with the time-siepping methods;

3) produces simultaneously both the time- and frequency-
domain results.

The remaining part of this paper is organized as follows:
in Section II, the damped wave equations are derived from
Maxwell’s equations and formulated using variational tech-
niques. Section III describes the AWE and CFH techniques
in the context of solving the FEM equations. To illustrate
the accuracy and efficiency of the proposed method, Section
IV presents numerical results for several electromagnetic field
problems. The efficiency of the proposed method is illustrated
and discussed in Section V. Finally a brief conclusion of the
paper is presented in Section VI

II. FORMULATION

For a homogencous, isotropic, and a linear medium, starting
from Maxwell’s equations the following scalar equation can
be derived as

bRy 0P
V2P — Hopm ~OHG = flz,y,2,t) (D

where ®(z,y, z,t) represents either the electric or magnetic
field components, and €, u, o are the permittivity, permeabil-
ity, conductivity of the medium respectively. f(z,y,2,t) is
related to the external excitation which could be function of
time, space or both. This expression can be applied to either a
diffusion problem where the second term in the left-hand-side
of (1) is dropped or to a wave equation where the third term
is dropped. Applying the finite element method [13] to (1)
where the interpolating functions are selected in exactly the
same fashion as compared to the time independent problems
except now the nodal values are taken to be functions of time
rather than constants. Expanding the unknown function ® in
the triangular finite element domain €2, as

Nep
Oz, y,2,t) = »_ & (Deu(,y,2) v
n=1

where N, is the total number of nodes in element Q.,, ®,(t)
denotes the local set of unknown time dependent expansion
coefficients and «,(x,y,2) are nodally based interpolation
functions such as those regularly used in FEM triangular
formulations [7]. It is of interest to note that in (2), the spatial
variables z, y and z are discretized whereas the temporal
variable ¢ is not. An appropriate functional to be minimized
for (1) is

F(®) = /Q (% | Vo2 + eud®” + opud®’ + ftl)) st (3)

where ) represents the finite element region. By minimizing
the functional of the problem and applying associated Dirichlet
and Neumann boundary conditions, a system of ordinary
differential equations is obtained as

AU + ouBY + euCU” = q )
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where U, A, B, ¢, and q are defined as follows

U={®}i=1,...,N (5)
Ne

A=>"[s, (6)
ep=1

~ A~ Ne

B=C=) [T], (7

ep=1

N,

a= > [Gl., ®)
ep=1 '

where N, denotes the total number of elements. A, B. and
Care Nx N symmetric, positive definite matrices assembled
from [S]., and [T]., and N is the total number of nodes. q is
a vector of dimension N, assembled from [G].,, containing
the forced terms attributed to the time or space excitation.
[Sle, and [T],, are real symmetric square element matrices
and [G],, is a column vector given by

[Sule, = / Vai - Vaj dde, ©

.,
[Toy)e, = / ayay dide, (10)

) .,
(Gile, :/ of f(t) dSe, (11)

subject to the initial conditions

¥(0) = ¥y (12)
v'(0) = Tg (13)

where (. denotes the domain of the finite elements. In (9) to
(11) p refers to either 1, 2, or 3 corresponding to one, two, or
three-dimensional (3-D) finite element solution scheme while
o is the corresponding shape function and e, represents the
finite elements. Taking the Laplace transform of (4) results in
(Cs? + Bs + A)X(s) = R(s) (14)

or
Y(s)X(s) = R(s) (15)

where B = uoB, C = euC, X(s) = L[¥()], and R(s)
is given by

R(s) = sC(¥ + Tg) + B + Q(s)

where Q(s) = L[q(t)].

(16)

III. MOMENT MATCHING TECHNIQUES

Moment matching techniques such as asymptotic waveform
evaluation (AWE) {24] and complex frequency hopping (CFH)
[21] have been topics of intense research in the circuit sim-
ulation area in the recent years. They have been successfully
and efficiently applied for obtaining the solution of large set
of ordinary differential equations.
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In general, moment matching technique approximates the
frequency response of a Taylor series expansion in the com-
plex s-plane. The cost of an expansion is approximately one
frequency point analysis. The moments (coefficients of the
expansion) are matched to a lower order transfer function
using a rational Padé approximation. This transfer function
can be used to obtain the output response. The moments are
generally taken from an s = 0 expansion (Maclaurin series).
Single Padé approximations are accurate near the point of
expansion in the complex s-plane and decrease in accuracy
with increased distance from the point of expansion. Complex
frequency hopping overcomes this problem and is summarized
in the following section.

A. Complex Frequency Hopping

Complex frequency hopping is a method by which the
frequency response of a system is expanded in multiple Taylor
series expansions in the Laplace s-domain. The expansion
points are chosen on or near the imaginary axis because
poles that dominate the transient and frequency response of
a system are found there. The moments of the expansion are
then matched to a rational Padé approximation. These Padé
approximations have several useful properties, one of which is
the convergence of the poles of the approximation to the actual
poles of a system. There are two approaches for generating
the response of a system.

In the first approach [20], [21], several expansion points are
generated and the converged poles from each expansion are
compared. If two expansions have the same poles, then they
are considered accurate within the radius of accuracy defined
by those poles. If no poles are found in common, then an
intermediate hop (expansion) is chosen. All poles within the
radius of accuracy of each hop are then collected giving the
actual system poles near the imaginary axis. The frequency and
transient responses are then a closed-form function of these
poles and their residues.

In the second approach [22], in order to obtain the frequency
response, a set of rational transfer functions are generated at
a minimized set of expansion points. It is the value of these
transfer functions that is compared at points intermediate to
the expansion points rather than a search for same poles. If
two transfer functions are found to give the same frequency
response at an intermediate frequency point between the two
generating hops then these transfer functions are considered
accurate. If this is not the case, then another hop is cho-
sen between the two expansion points and an expansion is
performed there. It was found empirically that this approach
generally requires lesser number of hops compared to the first
approach. This means that the CPU time can be reduced.
Further reduction was also noted due to the fact that no pole
convergence was required at each expansion point.

Summarizing, CFH ensures accuracy of an approximation
for a complete frequency range, using multiple expansion
points and corresponding Padé approximations at the fre-
quencies of interest. Additional hops are generated at an
incremental CPU cost above the cost of the first. However,
the number of hops typically needed ranges from 2-15, far
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less than full FFT analysis requiring hundreds or thousands of
frequency point analyzes.

B. Padé Approximation

Consider the response vector X(s) represented in (15).
Taylor’s series expansion of the output X(s) about a complex
frequency point s = s,, is given by

X(s) = Z M, (s —s,)" 17
n=0

where M, is the nth moment vector of the Taylor’s expansion
about s, and is given by

0" Y ()R($)]Jo=s,
M, = = /n!

(18)

A recursive equation for the evaluation of the moments can
be obtained in the form

n

[Y(s0)]Mp, = = > [YI'M,,_, /7! (19)
r=1
where
67"
Y] =
[ ] as™ s=s,
For each expansion point, the moments m, = [My]y);

n=0,1,2,...{2¢ — 1) of an output ¢ are matched to a lower
order frequency-domain function in the form

Ef:o a;8’

for 0 < s < jwp. (20)

- 1+ Z]]\il b,s7

For given L and M, the coefficients of the numerator and
denominator of the transfer function are related to the moments
by

ML_M4+1 ™ML—M+2 mr, by
ML_M42 ML_M+3 M1 bar—1
mr mry1 ML4M—1 by
mr4+1
mrL42
=—| 1)
ML+
r
ar =Y my_,b, (22)
2=0

where r = 0,1,...,Land m, = 0if 5 < 0.

C. Binary Search Algorithm

Pad€ approximation is very accurate near the point of
expansion ie., s = so. However, the accuracy of Padé
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jo

Real axis

complex 's’ plane -

Fig. 1. Generation of transfer function by CFH.

approximation decreases as we move further away from the
point of expansion similar to the case of a Taylor’s series
expansion.

In order to check the accuracy of an approximation, two
expansion points are necessary. The accuracies of these two
expansion points can be verified by matching the poles gen-
erated at these two expansion points [20], [21]. Alternatively,
the two expansion points can be verified for their accuracy by
finding the value of the transfer function at a point intermediate
to these two expansion points [22]. Number of expansions
required to obtain a fairly accurate set of transfer functions
over a specified frequency range is controlled by a binary
search algorithm.

The steps involved in the binary search algorithm for the
second approach is summarized below.

Step 1) Set fr =0 and fyg = fuax (Fig. 1)

Step 2) Expand the system’s response at frequency f = fr.
Determine the coefficients of the corresponding
transfer function Hy (s) using (21) and (22).
Expand the system’s response at frequency f =
fu. Determine the coefficients of the corresponding
transfer function Hy(s).

Set f = 1(fr + fu). Calculate Hp(j2xf) and
Hyg(j2rxf). If, |Hu(j2rf) — Hp(j2nf)| < e
where e represents pre-specified threshold for rel-
ative error,, GO TO Step 5. Otherwise expand at
fmia = (f1 + fu) and determine Hypiq(s).

If no middle frequency fi,iq 1S generated between
any two other frequency expansions, STOP, ELSE,
repeat Steps 2—4 between every two consecutive
frequency points (e.g., between fr & fumia an
fmia & fr). ’

A similar search algorithm can be used for the first approach
[21].

At the completion of the binary search algorithm, a set
of transfer functions are generated. The frequency response
at a particular frequency point is computed by choosing a
transfer function valid for that region. This is repeated for all
other frequency points and the system’s frequency response
is computed. The time-domain response is obtained as a

Step 3)

Step 4)

Step 5)
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closed form function of the generated poles and residues or
alternatively by using inverse fast fourier transform (IFFT).

D. Moments Generation

To derive an expression for moments M,,, we can rewrite
(14) using (16) and (17) at any arbitrary complex frequency
point s = s,, and expanding the right hand side of (14) using
Taylor’s series, we get

[(5— 50)’C+ (s — $0)B + A + (5 — 8,)25,C

£ B, + 052 S My(s — 80"

n=0
= }:R(So) + %RI(SO) + £i9%0)211”(50)
(s —s0)"

LR 7
7.

R"(so)] (23)
where R(s,) = By + Q(so), R/(s0) = C(¥o + ¥y) +
Q'(s0), R"(s0) = Q"(30)--- and R™(sg) = Q"(s0).

Equating the coefficients of the powers of (s — s,) on both
sides, we get

[Cs2 + Bs, + A]M, = R(s,)
[Cs2 + Bs, + A|M;

(24)
—[B +25,C]M, + R/(s0). (25)

Generalizing we have

[Cs2 +Bs, + A]M,,
R™(s0)

=-BM, | - C[2soMn—1 + Mn—?] + ol

(26)

for n > 2.

IV. NUMERICAL RESULTS

Example 1: For purposes of comparison the first problem
chosen is an example reported in [17]. Consider a one-
dimensional (1-D) diffusion problem shown in Fig. 2. The
problem consists of a magnetic slot with bottom and side
walls made of magnetic material with infinite permeability.
The time dependent magnetic field is illuminated on the top
surface of the magnetic slot producing a time dependent
current flowing through a metal-filled slot of infinite length.
The excitation of the magnetic field f(¢) in (1) on the top
surface of the magnetic slot is f(t) = H(t) = e — &P,
which is an EMP type excitation with o = —4.0 x 10° and
B = —4.76 x 10%. The other parameters are d = 1.0 X
10~* (m), p = 47 x 107 (H/m) and o = 5.76 x 10° (S/m).
The boundary condition of the problem is H(t) = 0 at
x = 0. Fig. 3 shows the normalized time-domain magnetic
field obtained by the proposed method at three different points
(=% z=4¢ and z = &). The results are compared
with the response obtained by solving the ordinary differential
equation (4) using conventional implicit nurerical integration
method [28]. A good agreement is observed between these
two methods. These results are also in agreement with the
analytical solution reported in [17].
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" Analytical Solution
—— CFH Method

Ht) = i(f)/a

Magnetic Field

0.1 * Conventional Method W
- CFH Method E
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0 02 04: 05 08 1 12 14 16 18 2
Time (Second) < 10°

Fig. 3. Time-domain magnetic field distribution for the magnetic slot.
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a

Fig. 4. The metallic rectangular waveguide.

Example 2: The second problem is a two-dimensional (2-
D) metallic rectangular waveguide shown in Fig. 4. It is
assumed that the waveguide is filled with a lossless dielectric
material o = 0 and its walls are perfectly conducting o, = co.
‘For this problem it is also assumed that TM plane wave is
propagated resulting in an electric field in the: z-direction
which can be determined from scalar wave equations. The
other components of the field can be obtained from the

-0.02

-0.041

~0.08-

Output (Voits)

-0.08f

-0.121

-0.14

2 > I s

1 15 2

25

Time (Seconds)

35

x10

4
-8

Fig. 5. Time-domain electric field distribution for the rectangular waveguide.

TABLE I
COMPARISON OF TRANSVERSE RESONANT
FREQUENCIES OF THE RECTANGULAR WAVEGUIDE

Mode FEM & CFH Analytical Solution

GHz f=5V(% +%) GHz
TMi+ .18102 .180152
TMo 25158 .249827
TMs .33749 .335178
TMs .46328 460658
T My 49702 492102
TMs, 52770 .521654
T M;s .54890 .540458
T Mgy 62588 .618038
TMs3 68161 672215
T Mes 73713 749481

z-components of the electric field. The application of the
proposed method is demonstrated for a rectangular waveguide
with dimensions (¢ = 1.5 m and b = 1.0 m) subject to the
boundary conditions

®(z,1,t) =0, @(z,0,t) =0, (27a)

®(0,y,¢t) =0, ®(1.5,y,¢£)=0 (27b)
and the initial conditions are given by

®(z,y,0) =0, %—f(%yﬁ) =0 (28)

where the right-hand side of the wave equation (1) is a function
of space only given by

flz,y) =sin (2—7?:—:5) sin(my) (29)

on the domain of solution.
The problem reduces to that of a wave equation given by

1 9%®
VIO - o = fay) (30)
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TABLE II
CPU TiME COMPARISON

Matrix Size FEM & CFH FEMFD Speed-up Number

(seconds) (seconds) Ratio of hops

25 x 25 .3 5.8 19 2

255 x 255 11.75 532.35 45 15

289 x 289 18.66 753.26 41 19

- 357 x 357 32.6 921.39 29 21

925 x 925 212.8 9364.68 45 23

1431 x 1431 500.33 36538.36 72 14

(8.3 minutes) (10.1 hours)
y TABLE 1V
T CPU TiME COMPARISON FOR THE ELECTROMAGNETIC SHIELD

FEMFD FEM & CFH Speed-up
€ o e e e — - — = b (sec) (sec) Ratio
17228.53 118.92 145

Fig. 6. Electromagnetic shield.

TABLE III
COMPARISON OF TRANSVERSE RESONANT FREQUENCIES
(MHz) FOR AN ELECTROMAGNECTIC SHIELD

LDFEM FEMFD FEM & CFH
531.90 530.16 529.98
894.50 814.57 879.78
1132.00 1131.30 1131.15

The analytical solution of (30) can be obtained using the
method of separation of variables given by

O(z,y,t) = (coswt — 1) f(z,y) 31

1372

where w = @ Fig. 5 shows both the time-domain re-
sponse of the electric field at (z = g’f and y = %) and the
analytical solution (31). It is observed that the two responses
are indistinguishable.

Example 3: Transverse resonance frequencies of the rect-
angular waveguide shown in Fig. 4 with the same dimensions
are calculated by the proposed method where the excitation
isat (z = ¢ and y = %) and output at (z = 3 and
y = %) To verify the proposed method the transverse resonant
frequencies of the rectangular waveguide are also calculated by
the analytical solution and the results are compared in Table 1.
A good agreement between the results is observed. To illustrate
the efficiency of the CFH technique, the transverse resonance
frequencies were also calculated using the FEMFD approach
where the frequency-domain response was obtained directly

solving (14). CPU time comparison is shown in Table II.

Fig. 7. Cylindrical waveguide.

Example 4: The example chosen here is an application to
a 2-D shielding problem reported in [17]. The third term
in (1) is dropped due to the omission of the conduction
current and this corresponds to wave equations. The problem
consists of two TM plane waves, independent of z-coordinate,
oppositely impinge on a rectangular metallic cylinder serving
as an electromagnetic shield, in which four slots or apertures
are symmetrically located as shown in Fig. 6. The boundary
conditions are as follows: Q%g(t—) = 0 on cb and oaq, %@ =
0 on ba.

A pulse is used as an excitation on the boundary co. The
physical structure and the dimensions of the problem are as
follows: the 2-D shield with slots is made of perfect conductor;
the excitation source has no spatial variation in the z direction;
oa =1.0m, ga =0.2m, ha = 0.2 m, ba = 1.0 m, de = 0.05
m and the slot width ef = 0.05 m. The location of the output
is at z = 0.9571 m and y = 0.05 m. In [17], LDFEM is
used to find the frequency response of the problem. Here, 841
nodes and 1568 elements were used in the FEM formulation.
Transverse resonant frequencies are compared in Table III and
CPU time comparison is shown in Table IV.

Example 5:

The problem chosen here is a cylindrical structure, problem
5.25 in [29]. The problem consists of a circular cavity with a
conducting wedge as shown in Fig. 7. For a structure where
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TABLE V
COMPARISON OF TRANSVERSE RESONANT FREQUENCIES
(MH2z) FOR A CYLINDRICAL WEDGE WAVEGUIDE

Analytical FEMFD FEM & CFH
Method
TMy = 154.50 156.85 156.25
TMyy = 245.65 229.34 229.49
TMs = 329.08 312.94 313.48
T Mo, = 353.80 351.68 351.56
TABLE VI
CPU TiME COMPARISON FOR A CYLINDRICAL WEDGE WAVEGUIDE
FEMFD FEM & CFH Speed-up
(sec) (sec) Ratio
3326.82 11.38 292

A
output
®
b h T
° B w
sourc i
8
— X
0 a i
Fig. 8. Triple TEM cell.

the thickness is relatively much smaller than the radius of
the waveguide a, the transverse resonant frequency of the
dominant mode is given by

Jr

B w
T 2rway i

where w is the first root of Bessel’s function J,(w) = 0 and
v = @ﬁf—%. For a specific case, w and f, are calculated
to be 3.28 and 154.5 MHz (32) where ®g = 45°, v =
0.5714, a = 1.0 m. For several modes the resonant frequency,
fr is calculated and is given in column one of Table V.

In this example, 396 nodes and 700 elements were used
in the FEM formulation. The analytical results are compared
with the results from FEMFD and FEM & CFH in Table V
and CPU time comparison is shown in Table VI.

Example 6: The Triple-TEM or TTEM considered is an
example reported in [30]. The TTEM cell has a tapered
structure and has an additional electric field polarization in the
transverse plane compared to conventional TEM cells. It also
has two separately perpendicular inner conductors (septums)
distinguishing it from GTEM cell. In [30], LDFEM is used to
find the frequency response of TTEM cell. The cross sectional
area of the TTEM cell is shown in Fig. 8. The problem domain

(32)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 9, SEPTEMBER 1996

TABLE VII
COMPARISON OF TRANSVERSE RESONANT
FREQUENCIES (MHZ) FOR A TTEM CELL

LDFEM FEMFD FEM & CFH
242.52 241.61 241.82
381.21 382.40 382.47
388.89 383.35 383.15
484.72 481.61 481.59
545.28 535.84 535.94
555.00 547.65 547.39
606.04 609.39 609.59
640.66 615.83 615.75

TABLE VIII
CPU TiME COMPARISON FOR A TTEM CeLL

FEMFD FEM & CFH Speed-up

(sec) (sec) Ratio

18393.43 25.92 710

is bounded by the following Dirichlet boundary conditions:
septum A is set to 1 V while septum B is set to 0 V. The
outer conductor is set to O V. The assumed excitation is a
line source of E, field for the TM modes. It is also assumed
that the fields have no variations along the z-coordinate. The
physical dimensions of the cell are: ¢ = 1.0 m, b = 1.0 m,
w=05m, h = 0.875 m and g = 0.1875 m. The number
of degrees of freedom chosen in the finite element calculation
was 676. The transverse resonant frequencies using the three
different approaches are shown in Table VII. Table VIII shows
a very good speed-up ratio for this problem.

V. DiscuUssSION AND CPU ANALYSIS

The main reason behind the efficiency of the proposed ap-
proach is that it requires one LU decomposition per frequency
hop, whereas FDFEM requires one LU decomposition at each
frequency point. Generally, the number of frequency hops
required is far less than the number of frequency points to
get an accurate solution. To illustrate this, consider the CPU
cost for the two approaches

(CPU)rprEM

= (CPU)s + Np x [(CPU)Ly + (CPU)pg]
(CPU)crn

= (CPU), + Ny x [(CPU)Lt + Num x (CPU)pg] (34)

where (CPU)pprrm is the total cost for the FDFEM ap-
proach, (CPU)gpy is the total cost for the FEM & CFH
approach, (CPU), is the time for reordering the sparse matrix,
N, is the number of frequency points considered, Ny, is the
total number of hops and N, is the total number of moments.
Table IX indicates the actual and expected speed-up ratio
obtained for different examples included in this paper. The
deviation from the expected value is due to the other factors
being neglected in (33) and (34).

For sparse matrices, (CPU)y is proportional to N* where
N is the size of the matrix resulting from FEM formulation and
o is problem dependent and ranges between 1.1 to 1.7 [15].
Assuming (CPU)py is the most dominant factor compared to

(33)
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the other CPU costs, we get speed-up ratio =

TABLE IX
COMPARISON OF SPEED-UP RATIO FOR DIFFERENT EXAMPLES

1533

Experiments Expected Speed-up Actual Speed-up
' Ny /N (CPU)rprem /(CPU)cFH
Eg. 3, matrix size = 925 45 45
Eg. 3, matrix size = 1431 74 72
Eg. 4, matrix size = 841 164 145
Eg. 5, matrix size = 396 456 292
Eg. 6, matrix size = 676 820 710

NP
Sor and the CPU

cost for the proposed FEM and CFH approach is

(CPU)CFH ~ KN,N¢ (35\)

where K is a constant.

VI. CONCLUSION

A new and efficient technique for simultaneously obtaining
frequency- and time-domain response for electromagnetic field
problems has been presented in this paper. The method is based
on the Laplace domain finite element formulation and com-
plex frequency hopping techniques. Several electromagnetic
problems have been studied using the new method and an
accurate match with the analytical solution has been found. A
speed-up of one to three orders of magnitude compared to the
conventional FEM technique has been obtained.
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